
Poincaré maps of Duffing-type oscillators and their reduction to circle maps: II. Methods and

numerical results

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 3903

(http://iopscience.iop.org/0305-4470/31/16/017)

Download details:

IP Address: 171.66.16.121

The article was downloaded on 02/06/2010 at 06:35

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 3903–3927. Printed in the UK PII: S0305-4470(98)87398-8

Poincaré maps of Duffing-type oscillators and their
reduction to circle maps: II. Methods and numerical
results

K Schmidt† and G Eilenberger‡
† EDS Electronic Data Systems Fertigungsindustrie (Deutschland) GmbH, Eisenstraße 58, D-
65424 R̈usselsheim, Germany
‡ Institut für Festk̈orperforschung, Forschungszentrum Jülich, D-52425 J̈ulich, Germany
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Abstract. Bifurcation diagrams and plots of Lyapunov exponents in ther–� plane for Duffing-
type oscillators

ẍ + 2rẋ + xq = f (x,�t)
exhibit a regular pattern of repeating self-similar ‘tongues’ with complex internal structure. We
demonstrate here how this behaviour is easily understood qualitatively and quantitatively from
a Poincaŕe map of the system in action-angle variables in the limit of large driving force or,
equivalently, small driving frequency. This map approaches theone-dimensionalform

ϕn+1 = α + β cosϕn
as derived in paper I.

This second paper describes our approach to calculating the various constants and functions
introduced in paper I. It gives numerical applications of the theory and tests its range of validity
by comparison with results from the numerical integration of Duffing-type equations. Finally
we show how to extend the range in the parameter space where the map is applicable.

1. Introduction

The Duffing oscillator

Ẍ + 2RẊ +X3+X = F coswτ (1)

is known to show many nonlinear phenomena like multiple resonances, bifurcations and
chaos. A numerically calculated diagram of bifurcation lines in parameter space (figure 1)
shows a regular pattern of similar stripes each of which consists of ‘tongues’ which denote
bifurcation cascades leading to chaotic time evolution.

The dynamics of the system always combines motion following the driving force and
oscillations with an internal frequency. Each stripe is characterized by a fixed numbern of
internal oscillations during one period of the driving force (figure 3). For largen the tongues
become increasingly similar to each other and approach an asymptotic generic pattern which
we expect to become particularly amenable to analysis and at which our investigation is
primarily aimed.

As in paper I† [1]‡ we therefore investigate the case of large driving amplitudesF . In
this case, because of the potential’s stiffening nonlinearity, the internal oscillations become

† References to formulae of paper I will be denoted by (I,. . . ).
‡ In (I, 5.27) the second line should read:= ϕa + e−rT (1+ 1/2e−rT in)C1 cos(ϕn + ψ1) + e−2rT [C2 cos(2ϕn +
ψ2)+ C3].
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Figure 1. Schematic phase diagram of Duffing’s equation. Heavy curves separate stripes of
resonance ordern, light curves denote bifurcation cascades. A path through the diagram along
increasing driving force amplitudeF crosses several bifurcation lines and eventually leads into
chaotic regions. The letters a to d refer to figure 3.

faster and faster compared to the frequency of the driving force.
For analytic purposes, however, it is more convenient to rescale according to

a = F 1/3 x = X

a
t = aτ � = w

a
r = R

a
(2)

to obtain

ẍ + 2rẋ + x3+ 1

a2
x = sin�t. (3)

This means that now the amplitude and internal frequency remain of order 1, whereas the
driving frequency becomes smaller asF in equation (1) increases. It is important that the
scaling (2) leaves the ratioR/w = r/� = c unchanged. This ratioc constitutes, besides
�, the second independent parameter. The linear term in equation (3) becomes irrelevant
in the limit of largea; we therefore considered only Duffing-‘type’ models without a linear
term in the restoring force.

Equation (3) can be viewed as a special case of the general class of oscillators

ẍ + 2rẋ + V ′(x,�t) = 0 (4)

where the total potentialV (x, t) has only one minimum inx and is periodic int . In paper
I we have shown how our analytic theory can be applied to this class. We concentrate here
on typical particular cases of the form

ẍ + 2rẋ + xq = xl sinp �t (5)

with positive real exponents(p, q, l) as in paper I. To obtain an intuitive picture one may
consider the case of oddq > 1, l = 0, p = 1.

Forced Duffing-type oscillators are systems, which allow a simple physical interpretation
of their equation of motion and at the same time they exhibit a wealth of complex phenomena
characteristic for nonlinear science. There are currently several active lines of study into
different aspects of these systems.
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There is the frictionless Duffing oscillator; in a sense a minimalistic yet realistic
Hamiltonian model system in which to study the effects of tori breaking and KAM theory
[2]. For our considerations friction, however small, must not vanish; we do not contribute
to a better understanding of Hamiltonian systems here.

For dissipative Duffing systems the next dichotomy is between double- (or multiple-)
well oscillators and single-well oscillators. In the former, the cause for bifurcations and
chaos in case of not too large driving forces is more obvious, but these phenomena seem
nevertheless more involved and quantitatively more difficult to understand [3] than in the
latter case, which we treat exclusively. Among the former, the extensive work of Gilmore
and McCallum [4] contains some connection with ours in that they derive one- and two-
dimensional return maps including maps of the circle. The physical mechanism underlying
these maps does not seem to be related to ours, however.

The driving force can be considered deterministic or noisy. In the latter case the topic
becomes a subject of statistical physics [5]. We consider deterministic periodic driving only
in the limit of large amplitudes (or, equivalently, small frequencies). However, several of
the methods developed here are expected to be applicable to other types of driving forces,
quasiperiodic ones for instance, which have been subject to several studies [6]. We have
briefly dwelt on this question in (I, section 6).

Finally, being interested inlarge forcing amplitudes, our investigation is complementary
in parameter space to investigations where different methods like pertubation theory,
averaging methods or Fourier series, to name just a few, are effective [7].

We have not touched upon the question of controlling [8] or coupling [9] Duffing
oscillators, also active topics of research. We believe, however, that our intuitive picture
induced by the oscillator’s Poincaré map may also open new roads of research into these
topics.

We found almost no investigation in the literature with aims, methods or results related
to ours. Only the work by Stefanescu [10], available as an unpublished report, derives
some of our results (though by different methods) with the aim of understanding the
self-similarity and generic internal bifurcation structure in the parameter plane at large
amplitudes. Stefanescu arrives at the same one-dimensional map of the circle for this
limiting case, without giving explicit analytical formulae for the coefficients.

There is a great wealth of numerical work on this bifurcation structure, the most
comprehensive being Ueda’s [11]. Furthermore, there are numerical studies concerning
particular questions on Duffing-type systems, for instance [12]. In our opinion, a
majority of these results could be classified systematically and understood qualitatively
and semiquantitatively (even in an intermediate amplitude regime) by relating them to our
map.

The map in which the term linear inϕn is absent is very different in effect to the
usually so-called ‘circle map’, for which a vast literature exists; our map falls instead into
the Feigenbaum class of maps [13]. An important aspect of our particular specimen from
this class is the periodicity of the cosine and hence multiplicity of attractors for larger values
of β. This aspect of the cosine map has not been closely investigated to our knowledge, nor
has the multiplicity of attractors in the far chaotic regime of Duffing-type systems, which
is explained by the former.

In the following we shall summarize the main ideas and results of paper I. The main
body of the present paper contains the numerical and technical methods used to apply our
theory and numerical checks of its accuracy and limits. The corresponding programs are
documented in [14] and are available on ftp://ftp.fz-juelich.de.
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We shall construct a Poincaré map of the system by transforming the Duffing oscillator
into a system with a time-dependent potential, the nonlinear parts of which decay during
each half-periodπ/� = T due to friction. We succeed in describing the cumulative effect
on the Poincaŕe map of the nonlinearity by a set of ‘universal’ constants which for large
values ofn are independent of the system parameters(r,�) (but do depend on the general
shape of the potentialV in (4)).

As a first step towards the construction of the Poincaré map we define special ‘reference
solutions’x0(t) for equation (5) with the property of varying only on the same time scale
as the driving force but not oscillating in the potential well. We show numerically that such
solutions do exist during each half-periodT between two zeros of the driving force, but that
they start oscillating if continued beyond one half-period. The reason for the latter is that
these solutions follow essentially the motion of the minimumxm(t) of the total potential
V (x, t). This minimum is flat when sin�t vanishes; at this instance the minimum moves
with momentarily infinite speed and the connection betweenx0(t) andxm(t) is broken.

Arbitrary solutionsx(t) are attracted byx0(t) during the corresponding half-period, i.e.
y = x−x0 decays as a consequence of friction (figure 2). The important feature ofx0—not
to oscillate—leads to an equation of motion fory with slowly varying coefficients in its
potentialW(y, x0(t)), the minimum of which is now stationary aty = 0 by construction.
This allows application of the adiabatic theorem in a next step. Ifx0 were extended beyond
one half-period, we would lose this essential advantage. Therefore we define one function
x0 for the even, another one for the odd half-periods, these solutions belonging todifferent

Figure 2. Three solutions of Duffing’s equation. Transient solutionx(t) (- - - -) leading to the
limit cycle (——). Reference solutionx0(t) (heavy curve). Some points belonging to the same
time instant are connected (· · · · · ·). Point A (t = 0): the right branch ofx0 starts. The solution
x(t) is attracted byx0(t), not by the limit cycle. At B (t = T ) the right branch ofx0 ends and
x(t) has closely approachedx0(t). The next reference point now belongs on the left branch,
this constitutes the kick which restarts decaying oscillations about the new reference solution.
The net result of these repeating kicks and decays is—in this particular case—the limit cycle.
Parameters:r = 0.275;� = 0.35; q = 3.
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Figure 3. Phase portraits for four parameter sets denoted by ‘a’ to ‘d’ in figure 1. Top left:
n = 3, simple periodic orbit, ‘a’. Top right: same state as top left, but next resonance,n = 4,
‘b’. Bottom left: same resonance as top left, but after the first (left–right symmetry breaking)
bifurcation,n = 3, ‘c’. Bottom right: chaotic orbit,n = 3, ‘d’.

initial conditions for the equation (5)†. This leads to discontinuities in the coefficients of the
differential equation fory at timestm = mT . The discontinuities constitute a ‘kick’ which
injects potential energy into they-system at timesmT and periodically restarts internal
oscillations (figure 3). This is the mechanism which produces the nonlinear effects; it is
missing in the corresponding drivenharmonicoscillator.

The technical possibility to analytically and explicitly construct a Poincaré map rests on
two features of the problem as discussed in paper I. First, the transformationz = e−rt y of
the difference coordinatey eliminates the friction in its equation of motion: the system
becomes Hamiltonian. Introducing action-angle variables(I, ϕ), the action I is then
constant due to the adiabatic theorem providedr is small, x0(t) is slowly varying and
the minimum ofW(y, x0(t)) is stationary aty = 0. Equally well though, one may keep
the dissipativey-system and translate the invariability of the Hamiltonian actionI into the
relationI (t1) = e−2r(t2−t1)I (t2) for the dissipative system.

The second feature is the homogeneity of orderq + 1 of the potentialW(y, x0(t)) as a
function of y andx0 for most of each half-periodT . As shown in paper I, this allows an
explicit expansion of the frequencyω(I (t), x0(t)) into powers ofI (t)

ω(I, x0) = c1x
q−1

2
0 + 2c2x

−2
0 I + 3c3x

− q+7
2

0 I 2+ · · · (6)

with known factorscν . This permits the explicit solution forϕ(t).

† We keep and use the symmetry(x, ẋ, t)→ (−x,−ẋ, t + T ) throughout this paper.
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Thus an explicit construction of the Poincaré map as a series in powers of e−rT is
achieved, which tofirst order has the simple form

ϕn+1 = α + β cosϕn. (7)

This map determines qualitatively and nearly quantitatively all the nonlinear effects one
might obtain in the large forcing limit from the Duffing-type equations considered. The
quantity α which roughly increases likeT causes the repeating pattern in the bifurcation
diagram and defines the ‘resonance order’n discussed earlier. The ‘nonlinear strength’
β ∼ C(r, T )e−rT measures the coordinate in parameter space along the tongues with their
bifurcation cascades, regions of chaotic motion and multiple attractors.

The parametersα and β in equation (7) constitute coordinates in parameter space,
which most clearly exhibit the near periodicity of the bifurcation diagram and the adiabatic
structure of the tongues. Translating back into the original parametersF andc = R/w of
the generalized Duffing’s equation (5), we obtain in the largec limit

α ∼ F δ β ∼ Fσcζe−πc (8)

where δ, σ and ζ depend on the exponents(p, q, l). For the original Duffing case
(p, q, l) = (1, 3, 0) we haveδ = 1

3, σ = 1
12, ζ = − 1

3.
To secondorder we obtained a two-dimensionalI–ϕ map of the type

ϕn+1 = 80+ e−rT 81+ e−2rT 82

in+1 = W1+ e−rT W2

(9)

where

80 = ϕa + A1T +
N∑
ν=2

AνFν(r,�)

81 = B1

N∑
ν=2

(ν − 1)AνFν(r,�) cos(ϕn + χ1)+ C1 cos(ϕn + ψ1)

82 =
N∑
ν=2

(ν − 1)AνFν(r,�)[B2 cos(2ϕn + χ2)+ B3+ 1
2(ν − 2)B2

1 cos2(ϕn + χ1)

+ 1
2B1in cos(ϕn + χ1)] + 1

2C1in cos(ϕn + ψ1)+ C2 cos(2ϕn + ψ2)+ C3

W1 = B1 cos(ϕn + χ1)

W2 = 1
2B1in cos(ϕ1+ χ1)+ B2 cos(2ϕn + χ2)+ B3.

(10)

The upper summation indexN is defined in paper I. In all cases considered here we
haveN = 2, the sums consisting of one term only. The quantitiesα andβ introduced in
equation (7) are rigorously defined through80 and81. In these expressions the dependence
of the map on the dynamic variablesand on the parameters(r,�) is given explicitly. In
the following we shall describe our strategy to determine the universal (i.e. parameter
independent) constantsϕa, Ia, Aν, Bν , Cν , ψν and χν and demonstrate the accuracy and
range of validity of this map. TheFν are known functions derived in paper I. In the
limit c = r/� � 1 these functions depend on the parameters asFν ∼ �−κν(1−η)c−κν with
exponentsκν as given in paper I.

The important feature of this map is its near one dimensionality given in equation (7).
The action variable varies only slightly under the map, being described by

In = �2γ+ηIa(1+ e−rT in) (11)
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at the beginning of each half-cycle in the(x, t) scale (in the(ξ, τ ) scale the factor�2γ+η

is absent—see the footnote in section 3. Equations (10) contain the information needed for
the conversion(α, β)↔ (r, T ) which links the parameters used later for the map to those of
the differential equation and thus explicitly gives the quantitative correspondence between
the two.

2. The reference solution

We are looking for a solutionx0(t) of equation (5) which oscillates as little as possible in
the ‘cup’ of the total potential

V (x, t) = 1

q + 1
xq+1− 1

l + 1
xl+1 sinp �t (12)

during one half-period of the driving force.
We expect that the minimum of the potential

xm = sinδ �t δ = p

q − l <
1

2
(13)

is very close to the functionx0 for most of the half-cycle, butxm cannot be a good
approximation forx0 neart = mT , because its time derivatives are divergent at this instant.

The inequalityδ < 1
2, which was assumed in paper I, is required to obtain at least one

relevant term, i.e.N > 2, in the sums of equation (10). Forδ > 1 one would obtain quite
a different behaviour of the system in its parameter space: the ordern would increase with
decreasingamplitudeF . Not unexpectedly, the harmonic oscillator is among the borderline
casesδ = 1. We do not know how systems with an intermediate exponent1

2 < δ < 1
behave.

In paper I, we considered the reference solutionx0 in the limit�→ 0 when the driving
force sin�t may be linearized. This allows us to eliminate� by rescaling which leads to
the differential equation (I, 4.18)

ξ̈ + 2ρξ̇ + ξq = ξ lτp (14)

with the scaling

x(t) = �γ ξ(t) ẋ(t) = �γ+ηξ(t) t = �−ητ ρ = r�−η (15)

where the exponents are given by

η = (q − 1)δ

2+ (q − 1)δ
λ = 2+ (q − 1)δ γ = 2δ

2+ (q − 1)δ
. (16)

We approximated the solution by the asymptotic series

ξ0(τ ) = τ δ
(

1+
∞∑
n=1

Pnτ
−nλ
)

(17)

with polynomialsPn of maximal ordern in the variableρτ , to be determined order by order
from equation (14). It is sufficient to use the first order (which does not contain the friction
ρ):

ξ0(τ ) ≈ τ δ
(

1− δ(δ − 1)

q − l τ−λ
)

ξ̇0(τ ) ≈ δτ δ−1

(
1− (λ− δ)(1− δ)

q − l τ−λ
)

(18)

at an initial timeτ = 1000 to obtain an accuracy of 8 digits forξ1 := ξ0(0), ξ2 := ξ̇0(0).
The numerical integration back toτ = 0 was done with a relative tolerance of 10−12. In
appendix A the values ofξ1 andξ2 are listed for various sets of the exponents(p, q, l).
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Figure 4. Reference solutionsx0 for q = 3, p = 1, l = 0. Top, from left: r =
1, 0.4, 0.04, 0.012; � = 0.25, 0.1, 0.01, 0.003. These values correspond toρ = 2. Bottom:
Same� values andr = 0. The trajectories are inξ scaling. The curve open at the right depicts
ξ0(τ ) for ρ = 0.

The reference solution so obtained is the asymptotic limit for�→ 0 of the reference
solutions for finite(r,�) and is smoothly approached by the latter (figure 4), if these are
appropriately scaled by powers of�. In the case of finite(r,�) one cannot eliminate� by
rescaling and has to consider the full equation (5). Similarly to the limiting case� → 0,
we approximate the solution by a series

x0(t) = sδ
(

1+
N∑
n=1

an�
2ns−nλ

)
(19)

with polynomialsan(c, sr/�) of the variabless = sin�t , c = cos�t . The an can be
determined from equation (5). The initial conditions for the numerical integration are most
conveniently chosen at the instantt = T/2 where the deviation ofx0 from sδ is expected to
be smallest. For this use of the series (19), which most likely is an asymptotic series, the
question arises how many termsN one needs to sum in order to obtain a desired numerical
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Figure 5. Approximations tox0 for parameters(p, q, l) = (1, 3, 0), � = 0.1, r = 0.2
calculated with three methods: Universal solutionξ0 (- - - -); initial conditions calculated with
the procedure described in the text (——); initial conditionsx(T /2) = 1, ẋ(T /2) = 0 lead to
an oscillating curve (——). For�→ 0, r ≈ � all three trajectories will converge.

accuracy. Summing up to the term of indexN = N0 which is the smallest for a given
value� might be impractical for small values� and would create the problem thatN0

changes as� varies; this would causex0(t) to vary discontinuously with�. Instead we
used the Levin transformationTn [15] to order 10 to obtain reliable values. It is an amazing
numerical fact that this increases the accuracy vastly and gives a smooth dependence ofx0

on the parameters(r,�).
The requirement thatx0 must not oscillate leaves a small but finite uncertainty in the

selection of initial conditions as long as� is finite. Numerically, the freedom of choice
is very small indeed as demonstrated in figure 5. Nevertheless we found no stringent
mathematical definitionfor the construction ofx0. Our procedureconstructivelydefines
x0 by using the Levin transformation to obtain initial conditions atT/2 for numerical
integration. This is consistent with the asymptotic series (17) to whichx0(t, �) converges
in the limit � → 0 if scaled as in equations (15). A selection of reference solutions for
different sets(p, q, l) is shown in figure 6.

We used automated formula manipulation techniques to obtain to order 10 the
polynomialsPn andan for the series (17) and (19) resp. [14].

3. Determination of map coefficients

The formulae for the Poincaré map are derived under the assumption that� can be
considered arbitrarily small when necessary and thatr scales as� with c = r/� > 1
held fixed.

In this asymptotic regime the reference solution and the difference systemy have the
following relevant properties: near the ‘ends’ of each half-cycle (corresponding to the
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Figure 6. Reference solutionsx0(t) for different exponentsq, p = 1, l = 0, at parameter values
r = 0, � = 0.01 in x, t scaling. From the outside:q = 5, 4, 3, 2, 1.1, 1. At q = 1.1, which is
near the harmonic valueq = 1 the deviation from the harmonic cycle is very small but visible.
The opening between the two branches forq = 1.1 is exaggerated here for visibility; actually
it is minute but not vanishing. Increasing values ofq lead to larger openings between the two
branches ofx0, the effects of the kick increases correspondingly.

regions I and V of figure 7) the reference solution has approached the limiting reference
solution† ξ0, of equation (14) as demonstrated in figure 4. For time intervals1t = �−ε

(with any ε < 1) friction can be neglected entirely becauser1t becomes arbitrarily small
with �. Thus numerical solutions for the difference systemy in this time regime are
universally valid for all values ofr and� if only scaled appropriately by powers of�.

In the ‘middle’ of each cycle, on the other hand, the reference solution is so close to
xm(t), the minimum position, thatx0 can be replaced byxm which then leads to a total
potentialW(y, xm) homogeneous of orderq + 1 in the variablesy and xm as mentioned
earlier. At the same timex0(t) varies so slowly that the adiabatic theorem applies. Finally,
well into each half-cycle, the actionI as expansion parameter has decayed by a factor of
about e−rT which was assumed to be small. This fact conspires, together with the smallness
of xm at thebeginning of each half-cycle (whereI is not small in general), to yield fast
convergence of the series of integrals forϕ(t) = ∫ ω(I (t), x0(t)) dt which is generated by
the expansion (6) ofω into powers ofI .

In overlapping regions between the middle and the ends we can patch together the
universal numerical solutions from the ends (which yield the parameter free numerical
constants) with the explicitly available analytic solution for the middle region and so obtain
the complete evolution for one half-cycle in the form of a Poincaré map.

† In the following we often switch without explicit mention between the(x, t) and (ξ, τ ) scales, which are
connected via (15).
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Figure 7. Different regions in the reference solution of Duffing’s equation in(ξ, τ ) scaling as
described in the text.

Table 1. Properties of the reference solution during different time intervals stated in the text.

Region ξ → Adiabatic Homogeneous

I ξ0

II ξ0→ τ δ ← sδ × ×
III sδ × ×
IV ξ0→ τ δ ← sδ × ×
V ξ0

The division of the half-cycleT into these different intervals is defined by time instants

τ1 = �−ε τ2 = �−2ε τ3 = T − τ2 τ4 = T − τ1 (20)

which are somewhat arbitrarily choosen withε = (1− η)/3, such that e−ρτ2 → 1 and such
that corresponding values of the variableξ behave as

ξ(τ1)→∞ ξ(τ2)→∞ ξ(τ2)

ξ(τ1)
→∞ (21)

in the limit � → 0. This dividesT into five intervals consecutively numbered I to V.
The system’s behaviour in these intervals is listed in table 1. In the overlapping regions II
and IV all conditions necessary to patch the numerical and analytical solutions together are
fulfilled (see figure 7).

The constants are determined in two steps, which relates to the fact that, at thebeginning
of each half-cycle, the coordinates (x, ẋ) will be very close to the endpoint of thelast
reference cycle(x0(T ), ẋ0(T )) which had attracted the trajectory under consideration. It is
actually thisdifferencewhich is the object of the Poincaré map.

In a first step, we start a particular trajectory atτ = 0 precisely with the initial
conditions(ξ, ξ̇ ) = (−ξ1, ξ2) from the endpoint of thepreviousbranch ofξ0. We integrate
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it numerically to some timeτ = τ+ inside region II, where we transform the variables(ξ, ξ̇ )
into action-angle variables(I, ϕ) as described in paper I. From here on, into region IV, the
time evolution of(I, ϕ) is given analytically by

I (t) = e−2rt�2γ+ηIa ϕ(t) = ϕa +
∫ t

0
ω(I (t), xm(t)) dt (22)

(note the indexm in the argument ofω). The initial conditions(Ia, ϕa) of this particular
trajectory are determined through insertion into (22) of the numerically determined values
at some instantτ+ inside region II. Obviously, the precise value ofτ+ inside region II must
be irrelevant, if the patching procedure is to make sense. This provides a numerical test
of the validity of our arguments. The values(Ia, ϕa) are ‘fictitious’ initial conditions at
t = 0, in the sense that they would generate an identical trajectory in the middle region if
the system were evolving according to (22) everywhere.

As any solution in action angle variables of they-system is given by (22) inside regions
II through IV (with some values replacing the particularIa, ϕa) we can assign fictitious
action-angle variables to any given solution in the intervals I and V by extrapolation of (22)
along the trajectory.The variables of our Poincar´e map are the values of these fictitious
variables at the end of each half-cycle. In region IV neart = T , the actionI of any
trajectory which started near (fictitious)(Ia, ϕa) at t = 0 (i.e. near the endpoint of the
previous reference solution) has decayed toI (t) ≈ Iae−2rT . Consequently the system has
become nearly harmonic, which means that the (true) difference cordinates are determined
through the (ficticious) action-angle variables approximately by

y(T ) ∼ u1+ u2 ẏ(T ) ∼ u1− u2

i
u1/2 = e−rT

√
Iae
±iϕ(T ). (23)

As this trajectory continues through the next cycle, the difference coordinates (23) will
determine the deviation fromIa, ϕa of the new initial valuesI (0) andϕ(0) (with the clock
set back to 0†). Since this deviation is small of order e−rT , we may expand to second order
(using summation convention):

I (0) = Ia +Kνuν + 1
2Kνµuνuµ

ϕ(0) = ϕa + Pνuν + 1
2Pνµuνuµ.

(24)

The constantsK, P in equation (24) contain all information on the desired Poincaré map.
These constants are now determined in a second step.

For 24 conveniently spaced pairs of fictitious ‘final’ coordinates(Ik, ϕk) at timeT we
determined the coordinates(yk, ẏk) at some timeT −τ+ in region IV and used these as initial
conditions to integrate numerically trajectories from−τ+ to τ+ to obtain the corresponding
(fictitious) initial conditions(Ik(0), ϕk(0)) for the next cycle. From these, the 10 constants
in equation (24) have been obtained by a least squares fit.

The method described encounters the technical problem that the usual canonical
transformation(I, ϕ) ↔ (ξ, ξ̇ ) as described in paper I is of sufficient accuracy only for a
system which isvery nearly adiabatic in regions II–IV. This would require very large values
τ+ (corresponding to very small values�) and thus very large intervals [−τ+, τ+] for the
numerical integration (an interval [−107, 107] would lead to only three digit accuracy in the
map coefficients). Instead we used an action-angle transformation (described in appendix B)
which takes into account the explicit time dependence of the potentialW(y, x0).

The map coefficients are then obtained to six digits accuracy by integrating trajectories
along the intervalτ = [−200, 200]. The integrations were done with a tolerance of 10−18.

† We make use of the earlier mentioned inversion symmetry of our system.
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We have thereby determined coefficients for a wide range of model exponents(p, q, l). In
appendix A a table for a few characteristic cases is given.

4. The Poincaŕe map with finite r and Ω

So far, we have not discussed what an ‘asymptotic regime’ means in actual numbers. We
shall now explore the reliability and limits in parameter space of our theory numerically
and test possible extensions.

To this end, we calculated and compared diagrams in parameter space of the Lyapunov
exponents by alternatively integrating the differential equation itself and iterating the
Poincaŕe map in its one- and two-dimensional form on a mesh of parameter values. We
consider the quantitiesα andβ as derived from the expressions80 and81 in equations (10)
as particularly suitable coordinates in parameter space; in these coordinates the near identity
of the periodically repeated tongues in the ‘Lyapunov diagrams’ is most clearly seen. The
deviation from full periodicity is supposedly caused by the second (and possibly higher)
order terms of the map.

Figure 8 graphically demonstrates the relation between the coordinates(α, β) and
(r, T ) in parameter space for the case(p, q, l) = (1, 3, 0). For other exponents, it looks
qualitatively the same.

Figures 9 and 10 compare Lyapunov diagrams for Duffing’s equation ((p, q, l) =
(1, 3, 0)) with the diagrams for the corresponding one- and two-dimensional maps. The
area in parameter space covered by this diagram obviously belongs to the asymptotic regime

Figure 8. Parameter transformation(α, β)→ (r, T ), (p, q, l) = (1, 3, 0). Shown are isolines of
T (· · · · · ·), r (——) and e−rT = e−πc (— · —). From left: T = 1500, 3000, 4500, 6000, 7000.
From left: r = 5× 10−3, 10−3, 5× 10−4, 3× 10−4, 2× 10−4, 1.5× 10−4 and 10−4. From top:
e−rT = 0.65, 0.56, 0.47, 0.32, 0.1, 0.003. The borderline for acceptable quantitative accuracy
of the ‘asymptotic’ Poincaré map is at about e−rT ≈ 0.3 (× hatches), the empirical Poincaré
map is good up to about e−rT ≈ 0.5 (× and− hatches).
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Figure 9. Lyapunov diagram of the one-dimensional map. Hatches denote values of Lyapunov
exponents in different intervals as in the legend. The dark shaded areas include values& 0 of
the exponent and indicate bifurcation lines and, at the far right, chaotic regions. The leftmost
dark arc covers the first, left–right symmetry breaking bifurcation line; the smaller ones belong
to a Feigenbaum-type bifurcation cascade.α axis in 2π units.

where our theory is applicable. The ‘tongues’ are very nearly periodic in(α, β) parameters.
The two-dimensional map predicts their location in theα direction with an absolute error of
order 10−2 as compared with the diagram directly determined from the differential equation.
For valuesβ > 1, i.e. at the right-hand side of the maps, several attractors with different
Lyapunov exponents can coexist, as is easily derived from the map (7). We have made no
effort to hit corresponding attractors in each of the two diagrams; this explains the minor
differences seen between them. Theβ coordinate measures—as anticipated—the strength
of the nonlinearity effects but not the resonance state. To reach larger values ofβ at fixed
values ofα one would have to increase e−rT (figure 8) and thus decrease the adequacy
of the map. It is possible, however, choosingα sufficiently large, to cover arbitrary large
β values and thus reach highly chaotic states and regimes with multiple attractors. For
α→∞ one could thus construct the complete ‘generic’ asymptotic tongue.

We have investigated corresponding diagrams for other sets of exponents(p, q, l)

permitted by the restriction of equation (13). They all yield similar results. The size
of the parameterα necessary to achieve very good applicability of the map varies slightly
with the value of the exponents: it increases with increasingq and l.

Next we shall explore possible extensions of our theory into regions of the parameter
space where the ‘asymptotic’ requirementsr � 1 � T and c = r/� < 1 are only
marginally fulfilled. With practical applications instead of a principal understanding in mind,
this could be the more relevant regime. Lyapunov diagrams in the near asymptotic regime
(e.g. aroundα = 20,β = 1, (p, q, l) = (1, 3, 0), which corresponds to e−rT ≈ [0.2 . . .0.5],
r ≈ [0.01. . .0.02], T ≈ 100) show that thequalitative correspondence (as far as Lyapunov
diagrams are concerned) between differential equation and Poincaré map is still rather
convincing, but not so thequantitativecorrespondence. This is for one or several of the
following reasons.
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Figure 10. Lyapunov diagram of Duffing’s equation (top) and the two-dimensional map
(bottom). α-axis in 2π units. Corresponding to the values of(α, β) in this plot, the
original parameters vary in the intervals: e−rT = 0.10. . .0.22; r = 0.000 33. . .0.000 50;
T = 4412. . .4418.

(i) If the expansion parameter e−rT is not small enough, higher orders markedly
contribute to the map. This could be remedied by deriving and using higher order terms of
the map—a procedure hardly practicable. In any case, if e−rT ≈ 1 our theory is no longer
relevant.

(ii) If T is so small that the overlapping regions II and IV cease to exist, our argument
for the existence of ‘universal’ constants for the map breaks down. Nevertheless the map
in its analytic form might still be applicable if corresponding coefficients (possibly slightly
parameter dependent) could be determined empirically.

(iii) The latter could also be true if the approximationx0 ≈ xm breaks down, i.e. region
III ceases to be relevant. In this case, the functionsFν(r,�) of equation (16) would have
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to be merged with the ‘empirical’ coefficients, provided those make sense at all.
In the following we describe a method for using empirical coefficients and reference

cycles to replace their ‘universal’ cousins. This extends the applicability of the Poincaré
map to parameter regions where the general mechanism at the basis of our theory still
applies, but our derivations for the asymptotic parameter regime become invalid. This
method still uses ‘fictitious’ and ‘real’ variables similar to the asymptotic case. ‘Fictitious’
coordinates(im, ϕm) at timest = mT are mapped to(im+1, ϕm+1) at timest = (m + 1)T ;
‘real’ coordinates(x, ẋ) are used to numerically integrate the system fromt = −T/2 to
t = T/2.

Values (I ′a, ϕ
′
a)† are determined by integrating the differential equation with initial

conditions(x(0), ẋ(0)) = (−x ′0(T ),−ẋ ′0(T )) along the interval(0, T /2). The values of
(y(T /2), ẏ(T /2)) are transformed into action-angle variables at this instant and the latter
are extrapolated back into fictitious values(I ′a, ϕ

′
a) at t = 0 by use of equation (22).

The other empirical coefficients are then determined according to the following scheme:

Real (In, ϕn) −→ (x, ẋ)  (x, ẋ) −→ (In+1, ϕn+1)

Coordinates t = −T
2

t = −T
2

t = T

2
t = T

2
↑ ↓

Fictitious (in, ϕn) —Poincaŕe map−→ (in+1, ϕn+1)

Coordinates t = 0 t = T .
Here ‘−→’ denotes a coordinate transformation, ‘ ’ the integration of a differential
equation and↑↓ analytical extrapolation as in equation (22). This scheme, applied to
a sufficiently large set of conveniently chosen trajectories, proceeds in analogy to the
determination of the universal constants in section 3, this time, however,separately for every
single set of parameters(r,�)! In contrast to section 3, there is no patching procedure left.
The finitely many ‘test’ trajectories are numerically integrated fromt = −T/2 to t = +T/2
in the variables(x, ẋ) and converted viay = x − x0 to action-angle variables precisely
at t = T/2. At this point, and only there, they are real action-angle variables. These
are then extrapolated back and forth into the entire interval [0, T ] as in equation (22) to
obtain fictitious action-angle variables. Obviously in this case the most suggestive and direct
definition of the Poincaré map would be in variables(I (T /2), ϕ(T /2)). Its analytic form
would be similar to the form (10) but a direct comparison with our asymptotic results would
be hindered. Therefore we still define the ‘empirical’ Poincaré map in fictitious variables
(I (T ), ϕ(T )). The variablei is now defined through

In(T ) = �2γ+ηe−rT I ′a(1+ e−rT in). (25)

If one chooses the initial conditions of the test trajectories on a single circle with fixed
i, as we have done here, one can calculate the empirical map coefficients using a Fourier
transform which only allows for the five frequencies einϕ , n = −2,−1, 0, 1, 2, which are
the ones also contained in the asymptotic map. This will no longer correspond to a strictly
systematic expansion in powers of e−rT , since the coefficients will include contributions
from higher than second order. As we no longer require e−rT to be very small, however,
this is a desired effect which increases the accuracy of the map.

For optimal accuracy, the action-angle transformation att = T/2 must take the time
dependence of the equation of motion into account, the sources of which are coefficients
e−2rt and x0(t) in the potential of the Hamiltonian version, as described in section 1, of

† We use a dash′ to denote parameter-dependent coefficients for the Poincaré map in place of the formerly defined
universal constants.
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Figure 11. Top: I ′a (——) andϕ′a (– – –) dependent onT , asymptotic valuesIa , ϕa (· · · · · ·).
Bottom: Start and end points of the parameter-dependent reference solutionx0(t) in ξ -scaling
(——), asymptotic(ξ0, ξ̇0) curves (· · · · · ·). The value of e−rT is held fixed here at 0.2 and thus
defines a definite value ofr for eachT .

the system under consideration. At the instantt = T/2, ẋ0(t) is still expected to be
negligibly small, but the friction coefficientr may no longer be consideredvery small. The
transformation is described in appendix B.

Figure 11 shows how the quantitiesI ′a, ϕ
′
a, x
′
0(0) andẋ ′0(0) determined by the described

procedure approach their asymptotic counterparts with increasingT ; the other coefficients
behave similarly.

The Lyapunov diagrams for the differential equation and Poincaré map to second
order with empirical coefficients (figure 12) show excellent quantitative agreement also
in the accessible non-asymptotic region. The parameter space coordinates used are still the
(α, β)-coordinates according to (7). Naturally, the bifurcation tongues are now deformed in
comparison to the asymptotic ones and no longer exhibit strict periodicity in theα-direction.

The empirical coefficients were calculatedfor every single parameter pointto
demonstrate the best possible application. This rather expensive procedure can be relaxed,
though, for most applications, since the coefficients vary only slightly in small sectors of
parameter space as figure 11 shows.
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Figure 12. Lyapunov diagram of Duffing’s equation (top) with parameters(p, q, l) = (1, 5, 2)
and the two-dimensional map (bottom) with(α, β)-dependent map coefficients,α-axis in 2π
units. The shape and position of the bifurcation tongues match excellently. The differences
between the two figures are caused by the existence of multiple attractors as explained in the
text.

5. Conclusions

We presented the methods and technical procedures needed to numerically obtain a
quantitative description of the behaviour of Duffing-type oscillators in the limit of large
forcing amplitudes through Poincaré maps explicitly available through analytical expressions
as derived in paper I. We showed how to separate the motion of these oscillators into the
slow motion of special reference trajectoriesx0(t) and the damped oscillating motion of
the difference amplitudey(t) = x(t) − x0(t). We constructed the reference trajectories
explicitly and plotted examples (figures 4 and 6) for different models and parameter values
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of Duffing oscillators. We explained how the potential’s nonlinearity repeatedly causes the
restart of oscillations in the difference systemy. We then described the techniques applied
to numerically determine the coefficients in the explicit analytic form of the map in action-
angle variables. In the asymptotic regime of large forcing and not too small friction these
map coefficients do not depend on the parameters of the original system, and thus also allow
for explicit description of the parameter dependence of the map.

In the near asymptotic regime, the map coefficients become parameter dependent and
are accessible only by numerical calculation for each parameter set separately; but the map
is still given explicitly as function of its dynamic (action-angle) variables. We constructed
plots of the Lyapunov exponents in the parameter plane for the differential equation and the
Poincaŕe map (figures 9 and 10) which show the excellent quantitative agreement between
both in the asymptotic as well as the near asymptotic case. We introduced special coordinates
(α, β) in parameter space as physically relevant and convenient. These coordinates lead
to phase diagrams which clearly exhibit the resonance tongues as periodically repeated
structures in parameter space (in the asymptotic case).

In the near asymptotic regime, we expect the greaterpractical applicability of our
theory. The Lyapunov diagrams no longer exhibit strict periodicity, but are still very well
amenable to investigation by means of a Poincaré map which allows prediction of system’s
behaviour depending on parameters. Iterating the Poincaré map instead of integrating the
differential equation is particularly relevant if computation time is critical, e.g. with real
time applications.

Appendix A. Numerical values of universal constants

Table 1. Universal constants for typical parameter values(p, q, l). The constantsA1 andA2

are derived from the factorscν of equation (6).

q = 3 q = 4 q = 2.1 q = 5 q = 4
p = 1 p = 1 p = 1 p = 1 p = 1.5
l = 0 l = 0 l = 0 l = 2 l = 0

δ 0.333 333 0.250 000 0.476 190 0.333 333 0.375 000
λ 2.666 666 2.750 000 2.523 809 3.333 333 3.125 000
γ 0.250 000 0.181 818 0.377 358 0.200 000 0.240 000
η 0.250 000 0.272 727 0.207 547 0.400 000 0.360 000
ξ1 0.677 030 0.740 548 0.568 342 0.690 634 0.629 283
ξ2 0.472 173 0.389 803 0.603 279 0.412 847 0.485 961
Ia 0.643 386 0.695 257 0.520 835 0.366 509 0.577 521
ϕa 0.590 845 1.170 859 2.252 078 3.020 047 1.874 718
B1 1.373 153 1.289 717 1.550 786 1.455 937 1.891 013
B2 0.630 713 0.702 156 0.576 042 1.685 496 1.332 053
B3 −0.179 346 −0.488 821 0.218 103−0.971 862 −0.808 882
C1 1.547 038 2.314 061 3.402 285 3.282 775 3.780 085
C2 0.804 548 1.639 907 1.492 144 4.576 395 3.741 357
C3 1.275 581 1.170 801 1.420 545 0.106 784 0.268 957
χ1 −2.208 157 −2.064 884 −2.429 117 −1.142 350 −1.973 212
χ2 −3.134 970 −3.045 390 2.933 932−1.630 484 3.034 903
ψ1 2.848 043 −2.799 271 −2.817 896 −1.574 090 −2.256 788
ψ2 2.157 146 2.550 070 2.602 434−1.720 956 2.826 991
A1 1.426 348 1.614 111 1.237 579 1.235 253 1.486 087
A2 −0.375 308 −0.782 164 −0.124 132 −1.832 548 −0.649 711
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Appendix B. Time-dependent action-angle transformation

In sections 3 and 4 we encountered the task of converting position–momentum variables at
large times into action-angle variables for a system with explicit time dependence. Ideally,
this time dependence would be so small that the adiabatic theorem applies and the action
I remains constant. To achieve adiabaticity in practice, the numerical requirements on the
parameters which determine the time dependence in the Hamiltonian and consequently the
requirements on the integration intervals would become extreme. Integration times and lack
of numerical accuracy would remain unsatisfying for our purposes. To overcome these
difficulties we derived time-dependent canonical transformations which led to a constant
action I at times long before the regime of sufficiently slow time dependence is reached.
As this region is approached, the transformation approaches the stationary one which was
discussed in paper I. Although rather technical, these transformations are indispensable for
accurate numerical determination of the coefficients in our Poincaré map. For reproducibility
of our results we therefore find it necessary to describe these transformations in some depth.

Since we require a transformation which leads to the equation of motion

İ = −∂H
∂ϕ
= 0 (26)

the momentary frequency must become independent ofϕ:

ϕ̇ = ∂H

∂I
= ω(I, t). (27)

The equations of motion for the original Hamiltonian variables(z, p, t), expressed as
functions of the variables(I, ϕ, t) are consequently

∂z

∂t
+ ∂z

∂ϕ
ω(I, t)− p = 0

∂p

∂t
+ ∂p
∂ϕ
ω(I, t)+ ∂W(z, t)

∂z
= 0.

(28)

The total restoring force∂W/∂z for our systems of interest can be written as an expansion

∂W

∂z
= ω2

0(t)z

(
1+

∞∑
n=1

bn(t)(v(t)z)
n

)
(29)

where certain time-dependent factorsv(t) are kept separately for later convenience. The
equations (28) are now solved by the following ansatz, which obviously is an expansion
into anharmonic corrections:

z = − 1
2

∞∑
n=1

vn−1Rn
n∑
k=0

Qn,n−2k(t)e
i(n−2k)ϕ

p = − i

2
ω0(t)

∞∑
n=1

vn−1Rn
n∑
k=0

Pn,n−2k(t)e
i(n−2k)ϕ

(30)

ω(I, t) = ω0(t)B B = 1+
∞∑
1

β2n(vR)
2n (31)

with R = (2I/ω0(t))
1/2.

If this ansatz were inserted without more ado into equations (28), one would obtain
differential equations in the independent variablet for the coefficientsQ, P and β,
which then could be solved order by order ascending withn. These equations leave
the coefficients underdetermined, as a consequence of the fact that a time-dependent
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canonical transformation to action-angle variables leaves the freedom to redefine the angle
via ϕ→ ϕ +9(R, t). We use this freedom to impose the following restrictions.
• The coefficientsβ2n are those of the time-independent transformation, i.e. the

coefficients obtained by dropping the time derivative in (28).
• The coefficientsQ2n+1,1 are real.
• All coefficients are to approach the corresponding ones of the time-independent

transformation in the adiabatic limit.
This strategy was used in two different contexts as follows.

B.1. Patching operation

As described in section 3, we had to patch together numerical solutions to analytical solutions
in a region where the reference solution was given by the asymptotic expression from
equation (17):

ξ0(t) = t δ
(

1+
∞∑
1

hnw
2n

)
(32)

with known coefficientshn (see below for definition ofw). In comparison to equation (29)
we obtain

∂W

∂z
= (z+ ξ0)

q − ξq0 − tp((z+ ξ0)
l − ξ l0)

= ω2
0(t)z

(
1+

∞∑
1

bν

(
z

ξ0

)ν )
(33)

where

ω2
0(t) = qξ (q−1)

0 − tplξ l−1
0

= ω̃2
0t
(q−1)δ(1+ w2S) (34)

bν(t) = 1

ω2
0

[(
q

ν + 1

)
ξ
q−1
0 − tp

(
l

ν + 1

)
ξ l−1

0

]
(35)

andS andbν turn out to be asymptotic series in the variablew starting with a term∼ w0.
We eliminate prefactors according to

w = i

ω̃0
t−κ ω̃0 = (q − l)1/2 κ = 1+ q − 1

2
δ (36)

z = t− q−1
4 δz̃ p = t q−1

4 δω̃0p̃ R = t− q−1
4 δ

(
2I

ω̃0

)1/2

(37)

v = t−µ µ = q + 3

4
δ (38)

to obtain

B
∂z̃

∂ϕ
+ iw

(
D + q − 1

4
δ

)
z̃− p̃ = 0

B
∂p̃

∂ϕ
+ iw

(
D − q − 1

4
δ

)
p̃ + z̃

(
b0+

∞∑
1

bν(vz̃)
ν

)
= 0

(39)

D = µv ∂
∂v
+ κw ∂

∂w
= −t ∂

∂t
. (40)
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Figure B1. Time dependence of the valuesIa andϕa obtained by integration of the equation
ξ̈ + ξ3 + τ = 0 and time-dependent action-angle transformation as described in appendix B.1.
The graph shows log|Ia − Iτ | and log|ϕa − ϕτ | whereIτ andϕτ are the values determined by
using the action angle transformation at the instantτ . The figure shows that the values(Iτ , ϕτ )
stay constant up to 11 digits for timesτ larger than 30. The increase of the deviation for larger
values ofτ is caused by rounding errors during integration of the differential equation (accuracy
10−14). The values(Ia, ϕa) were determined atτ = 200 with an accuracy of 10−18. The
deviations do not reach zero because of this limited numerical accuracy.

The operatorD acting on termsRnvn−1wj just adds prefactorsµ(n−1)+κj . The coefficients
P andQ can now be expanded as series

Pn,k =
∞∑
j=0

pn,k,jw
j Qn,k =

∞∑
j=0

qn,k,jw
j (41)

and the coefficientsp andq recursively determined.
Note that the imaginary i cancels from equations (39) (thus the coefficientsp andq can

be taken to be real) and thatD is preceded by a prefactorw in (39) with the consequence
that the time dependence of the transformation vanishes in the asymptotic limit.

Technically we determined the coefficientsp, q andβ with the help of computer algebra
to order 10 inR andw; similarly the inversion of the transformation as

Reiϕ =
∑

Cµ,ν,j

(
ip

ω0

)ν
zµwj . (42)

The quantitiesIa andϕa as determined by help of this transformation are shown in figure B1
as functions of the intervalt used for numerical integration.

B.2. Empirical Poincar´e map

In this case we use canonical transformations into action-angle variables at the instant
t = T/2. In the Hamiltonized version for they-system the position variable is decorated
everywhere by a factor e−rt , the time dependence of which is not necessarily negligible.
On the other hand, the time dependence of the reference solutionx0 is negligible in the
vicinity of t = T/2. Thus we have

∂W(z, t)

∂z
= ω2

0z

(
1+

∞∑
n=1

bn

(
e−rt

x0
z

)n )
(43)
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Figure B2. I (t) determined by the time-dependent action-angle transformation as in
appendix B.2 for Duffing’s equation(p, q, l) = (1, 3, 0) with parametersr = 0.01, T = 100
resp.α = 140, β = 1.5. This transformation keepsI (t) constant only in the vicinity of the
instants(n+ 1

2)T . The oscillations near the ‘kicks’ att = nT are a result of the time dependence
of x0(t) which was not accounted for.

where the quantities (withx0(T /2))

ω2
0 = xq−1

0 (q − lxl−q0 )− r2 (44)

bν =
(
q

ν

)− ( l
ν

)
x
l−q
0

q − lxl−q0 − x1−q
0 r2

(45)

are now treated as time independent. This time we substitute

v = e−rt

x0
t
∂

∂t
→−rv ∂

∂v
(46)

and determine the coefficientsQ and P as power series in the (now time independent)
variable

w = ir

ω0
(47)

with real coefficientsp and q, in analogy to the previous case (including the inverted
transform). Figure B2 shows the behaviour of the actionI for some typical solution as
determined by this method from the numerical solution inx-coordinates. It shows that the
action is constant in quite a reasonable vicinity of the instants(n+ 1/2)T .
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90-11
[11] Ueda Y 1980 Steady motions exhibited by Duffing’s equation: a picture book of regular and chaotic motion

New Approaches to Non-linear Problems in Dynamicsed P J Holmes (Philadelphia, PA: SIAM)
Ueda Y 1992The Road to Chaos(Santa Cruz, NM: Aerial)

[12] Parlitz U and Lauterborn W 1985 Superstructure in the bifurcation set of the Duffing equationPhys. Lett.
107A 351–5

Zeni A R and Gallas J A C1995 Lyapunov exponents for a Duffing oscillatorPhysica89D 71–82
Van Dooren R and Janssen H 1996 A continuation algorithm for discovering new chaotic motions in forced

Duffing systemsJ. Comput. Appl. Math.66 527–41
[13] Feigenbaum M J 1980 Universal behaviour in nonlinear systemsLos Alamos Sci.1 4–27
[14] Schmidt K and Eilenberger G 1998A Program Suite for the Analysis of Duffing’s equation supplemented by:

XDOC, a Program Documentation System(Internal report, available from the authors and from server
http://www.kfa-juelich.de/iff/theory1/duffing/index.html)

[15] Levin D 1973 Development of non-linear transformations for improving convergence of sequencesInt. J.
Comput. Math.B 3


